19 research outputs found

    Concurrent investigation of global motion and form processing in amblyopia: an equivalent noise approach

    Get PDF
    PURPOSE: Directly comparing the motion and form processing in neurologic disorders has remained difficult due to the limitations in the experimental stimulus. In the current study, motion and form processing in amblyopia was characterized using random dot stimuli in different noise levels to parse out the effect of local and global processing on motion and form perception. METHODS: A total of 17 amblyopes (8 anisometropic and 9 strabismic), and 12 visually normal subjects monocularly estimated the global direction of motion and global orientation in random dot kinematograms (RDK) and Glass patterns (Glass), whose directions/orientations were drawn from normal distributions with a range of means and variances that served as external noise. Direction/orientation discrimination thresholds were measured without noise first then variance threshold was measured at the multiples of the direction/orientation threshold. The direction/orientation and variance thresholds were modelled to estimate internal noise and sampling efficiency parameters. RESULTS: Overall, the thresholds for Glass were higher than RDK for all subjects. The thresholds for both Glass and RDK were higher in the strabismic eyes compared with the fellow and normal eyes. On the other hand, the thresholds for anisometropic amblyopic eyes were similar to the normal eyes. The worse performance of strabismic amblyopes was best explained by relatively low sampling efficiency compared with other groups (P < 0.05). CONCLUSIONS: A deficit in global motion and form perception was only evident in strabismic amblyopia. Contrary to the dorsal stream deficiency hypothesis assumed in other developmental disorders, deficits were present in both motion (dorsal) and form (ventral) processing

    Using Functional Near Infrared Spectroscopy (fNIRS) to study dynamic stereoscopic depth perception

    Get PDF
    The parietal cortex has been widely implicated in the processing of depth perception by many neuroimaging studies, yet functional near infrared spectroscopy (fNIRS) has been an under-utilised tool to examine the relationship of oxy- ([HbO]) and de-oxyhaemoglobin ([HbR]) in perception. Here we examine the haemodynamic response (HDR) to the processing of induced depth stimulation using dynamic random-dot-stereograms (RDS). We used fNIRS to measure the HDR associated with depth perception in healthy young adults (n = 13, mean age 24). Using a blocked design, absolute values of [HbO] and [HbR] were recorded across parieto-occipital and occipital cortices, in response to dynamic RDS. Control and test images were identical except for the horizontal shift in pixels in the RDS that resulted in binocular disparity and induced the percept of a 3D sine wave that 'popped out' of the test stimulus. The control stimulus had zero disparity and induced a 'flat' percept. All participants had stereoacuity within normal clinical limits and successfully perceived the depth in the dynamic RDS. Results showed a significant effect of this complex visual stimulation in the right parieto-occipital cortex (p < 0.01, η(2) = 0.54). The test stimulus elicited a significant increase in [HbO] during depth perception compared to the control image (p < 0.001, 99.99 % CI [0.008-0.294]). The similarity between the two stimuli may have resulted in the HDR of the occipital cortex showing no significant increase or decrease of cerebral oxygenation levels during depth stimulation. Cerebral oxygenation measures of [HbO] confirmed the strong association of the right parieto-occipital cortex with processing depth perception. Our study demonstrates the validity of fNIRS to investigate [HbO] and [HbR] during high-level visual processing of complex stimuli

    Effects of glaucoma and snoring on cerebral oxygenation in the visual cortex: a study using functional Near Infrared Spectroscopy (fNIRS)

    Get PDF
    Purpose: The purpose of this study was to investigate the effects of snoring and glaucoma on the visual Haemodynamic Response (HDR) using functional Near Infrared Spectroscopy (fNIRS). Methods: We recruited 8 glaucoma patients (aged 56-79), 6 habitual snorers (aged 26-61) and 10 healthy control participants (aged 21-78). Glaucoma patients were of varying subtypes and under care of ophthalmologists. Prior to testing visual acuity, blood pressure, heart rate and a medical history were taken. HDRs were recorded over the primary visual cortex (V1) using a reversing checkerboard paradigm. Results &amp; Discussion: All participants showed the characteristic increase of Oxyhaemoglobin concentration ([HbO]) and decrease of Deoxyhaemoglobin concentration ([HbR]) during visual stimulation (p &lt; 0.001, η2 = 0.78). Despite this, there were signifi cant group differences with a large effect size (η2 = 0.28). During visual stimulation normal participants had greater [HbO] compared to snorers and glaucoma patients (p &lt; 0.01). Both glaucoma patients and snorers presented with comparable HDR for [HbO] and [HbR] in V1. Importantly, during visual stimulation, the increased [HbO] in glaucoma patients correlated well with their visual fi elds and self-reported activities of daily living (r = -0.98, r = -0.82, p &lt; 0.05). Both glaucoma patients and snorers presented with an attenuated HDR in V1. Our results suggest a possible vascular link between these conditions

    Improvement of visual function in an adult amblyope

    No full text

    Perceptual visual distortions in adult amblyopia and their relationship to clinical features

    Get PDF
    Purpose: Develop a paradigm to map binocular perceptual visual distortions in adult amblyopes and visually normal controls, measure their stability over time, and determine the relationship between strength of binocular single vision and distortion magnitude. Methods: Perceptual visual distortions were measured in 24 strabismic, anisometropic, or microtropic amblyopes (interocular acuity difference ≥ 0.200 logMAR or history of amblyopia treatment) and 10 controls (mean age 27.13 ± 10.20 years). The task was mouse-based target alignment on a stereoscopic liquid crystal display monitor, measured binocularly five times during viewing dichoptically through active shutter glasses, amblyopic eye viewing cross-hairs, fellow eye viewing single target dots (16 locations within central 5°), and five times nondichoptically, with all stimuli visible to either eye. Measurements were repeated over time (1 week, 1 month) in eight amblyopic subjects, evaluating test–retest reliability. Measurements were also correlated against logMAR visual acuity, horizontal prism motor fusion range, Frisby/Preschool Randot stereoacuity, and heterophoria/heterotropia prism cover test measurement. Results: Sixty-seven percent (16/24) of amblyopes had significant perceptual visual distortions under dichoptic viewing conditions compared to nondichoptic viewing conditions and dichoptic control group performance. Distortions correlated with the strength of motor fusion (r = −0.417, P = 0.043) and log stereoacuity (r = 0.492, P = 0.015), as well as near angle of heterotropic/heterophoric deviation (r = 0.740, P < 0.001), and, marginally, amblyopia depth (r = 0.405, P = 0.049). Global distortion index (GDI, mean displacement) remained, overall, consistent over time (median change in GDI between baseline and 1 week = −0.03°, 1 month = −0.08°; x-axis Z = 4.4256, P < 0.001; y-axis Z = 5.0547, P < 0.001). Conclusions: Perceptual visual distortions are stable over time and associated with poorer binocular function, greater amblyopia depth, and larger angles of ocular deviation. Assessment of distortions may be relevant for recent perceptual learning paradigms specifically targeting binocular vision
    corecore